Strategies for High‐Performance Solid‐State Triplet–Triplet‐Annihilation‐Based Photon Upconversion
نویسندگان
چکیده
منابع مشابه
Photon upconversion nanomaterials.
Photon upconversion through the use of lanthanide-doped materials has been the focus of a growing body of research in the fields of materials chemistry and physics for more than 50 years. The attraction of this field has been the ability to generate photons at shorter wavelengths than the excitation wavelength after laser stimulation. Despite its potential utility for a number of applications, ...
متن کاملPhoton correlation in single-photon frequency upconversion.
We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in t...
متن کاملTransition Metal‐Involved Photon Upconversion
Upconversion (UC) luminescence of lanthanide ions (Ln3+) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln3+, transition metal (TM) ions, e.g., Mn2+, usually possess a single broadband emission due to its 3d5 electronic configuration....
متن کاملPhoton upconversion with directed emission
Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matr...
متن کاملPhoton Upconversion through Triplet-Triplet Annihilation
The sun is the only renewable energy source that can accommodate humanity’s energy needs today and in the foreseeable future. The sunlight reaching the planet’s surface is filtrated through the atmosphere, reducing its UV-light intensity in the 300-400 nm range, which indeed can be harmful to life as we know it in too large doses. However, many useful photoreactions require in practice such hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2020
ISSN: 0935-9648,1521-4095
DOI: 10.1002/adma.201908175